10-2-2012

Stifling Scientific Progress: The District Court’s Decision in Myriad

Seth R. Ogden
American University Washington College of Law

Follow this and additional works at: http://digitalcommons.wcl.american.edu/ipbrief

Part of the Intellectual Property Commons

Recommended Citation
Stifling Scientific Progress: The District Court’s Decision in Myriad

Keywords
Human Genome, DNA, gene sequencing
I. Introduction

The human genome contains approximately 23,000 protein-coding genes.1 Approximately twenty percent of these human genes are patented, with some genes being patented as many as twenty times.2 On May 12, 2009, the Association for Molecular Pathology (“AMP”) and nineteen other plaintiffs, including healthcare associations and individual doctors, researchers, and patients, filed a lawsuit against the United States Patent Office (“USPTO”), Myriad Genetics (“Myriad”) and ten other individual defendants in their capacity as Directors of the University of Utah Research Foundation challenging the validity of Myriad’s gene patents.3 Myriad holds, through either assignment or exclusive license, a number of domestic and international patents covering isolated DNA molecules encoding the BRCA1 and BRCA2 (“BRCA1/2”) mutations that cause an increased risk for the development of breast and ovarian cancer and diagnostic methods using these isolated DNA molecules to identify a patient’s predisposition to the development of familial breast cancer.4 In its complaint, AMP alleged that the patent claims were invalid under Article 1, Section 8, clause 8 of the United States Constitution and 35 U.S.C. § 101 “because human genes are products of nature, laws of nature and/or natural phenomena, and abstract ideas or basic human knowledge or thought.”5 Similarly, AMP further asserted that the claims were unconstitutional under the First and Fourteenth Amendments to the United States Constitution, as they represent patents on abstract ideas or basic human knowledge and/or thought.6

On March 29, 2010, Judge Robert Sweet of the United States District Court for the Southern District of New York granted the plaintiffs’ motion for summary judgment, holding the patents related to BRCA1/2 invalid.7 Judge Sweet’s resolution of the motion was “based upon long recognized principles of molecular biology and genetics: DNA represents the physical embodiment of biological information, distinct in its essential characteristics from any other chemical found in nature.”8 Therefore, Judge Sweet concluded that the isolated DNA containing sequences found in nature was unpatentable subject matter under 35 U.S.C. § 101.9 He further concluded that the claimed comparisons of DNA involved in the diagnostic methods were simply abstract mental processes, also rendering them unpatentable under 35 U.S.C. § 101.10 Though providing no comfort for Myriad, Judge Sweet granted the USPTO’s motion for summary judgment dismissing the constitutional claims, invoking the doctrine of constitutional avoidance.11 Not surprisingly, Myriad filed a Notice of Appeal to the Court of Appeals for the Federal Circuit on June 16, 2010.12 Oral arguments were heard on April 4, 2011.13

Although the district court’s decision’s applicability is limited to the patents in the instant case, if upheld by the Federal Circuit, the decision would have far-reaching implications for human gene patents currently in force and the future of the biotechnology industry, both domestically and abroad. Therefore, this paper seeks to address the legal and policy issues

4. Id. at ¶31. The challenged patents include US 5,747, 282; US 5,837,492; US 5,693,473; US 5,709,999; US 5,710,001; US 5,753,441; and US 6,033,857.
5. Id. at ¶102.
6. Id. at ¶103.
8. Id. at 185.
9. Id.
10. Id.
11. Id. at 237-38.
concerning human gene patents in view of the current decision in *Association for Molecular Pathology v. United States Patent & Trademark Office* (hereinafter “Myriad”) with a view to related cases involving Myriad’s patenting of isolated DNA molecules encoding BRCA1/2 in the United States and European forums.

II. Background

A. DNA and Genes – The Information That Life Depends On

Watson and Crick revolutionized genetic research in 1953 with their determination of the structure of deoxyribonucleic acid (“DNA”) and the elucidation of the implications for such a structure in genetic research.\(^1\) DNA exists in nature as linear sequences of nucleotides (chemical units known as adenine, thymine, guanine, and cytosine) that are packaged into chromosomes. Each chromosome contains hundreds of genes, occurring one after the other as discrete lengths of sequence within the linear DNA. The order of the nucleotide sequences within a gene determines the functioning of that gene, and the characteristics of individual genes collectively contribute to the genetic traits a person receives.

How does the nucleotide sequence determine the functioning of a gene? Crick articulated this process within the framework of what is known as the central dogma of molecular biology.\(^1\) The central dogma outlines the process by which genes are expressed; in other words, it describes the mechanism by which the genetic instructions contained in the nucleotide sequence of a gene effectuate a function within a cell. Essentially, DNA is copied repeatedly into a similar form known as mRNA (transcription), and these numerous copies of mRNA are turned into protein (translation). These proteins then interact to carry out a host of functions within the cell. A simple analogy illustrates the concept: A person reads instructions (“DNA”) for how to put a table together, and that person’s brain processes the information (“transcription”) into a signal (“mRNA”); that person’s brain then sends out that signal (“mRNA”) telling their body to carry out the processed instructions from the brain to put the table (“proteins”) together (“translation”).

Importantly, alterations in the nucleotide sequences, called mutations, can occur, principally by either faulty repair of DNA damage or imperfect copying of DNA when it is passed on to new cells. Many of these mutations are silent, resulting in no perceptible consequences. However, certain specific mutations can increase a person’s risk for the development of a variety of serious diseases, including cancer.\(^1\) Accordingly, certain mutations of the “breast cancer 1, early onset” and “breast cancer 2, early onset” (BRCA1/2) genes lead to increased risk of breast and ovarian cancer. The average woman in the United States, without such a mutation, has about a 12% chance of developing breast cancer in her lifetime, but carriage of an abnormal BRCA1 or BRCA2 gene augments this to about an 80% chance.\(^1\) With regard to ovarian cancer, the average woman has an approximately 1.4% chance of developing ovarian cancer, but for a woman with a BRCA1 or BRCA2 mutation that risk increases to 15% to 40%.\(^2\)

Because an increased risk for breast or ovarian cancer has many implications for an individual’s choice of lifestyle and preventative care, the scientific and healthcare communities have begun to intensify research into genetic testing to facilitate early identification of BRCA1/2 mutations in patients. Genetic testing for mutations within an individual’s DNA sequence is carried out by one of a number of methodologies collectively known as gene sequencing, which allows determinations of the exact order of nucleotides within a strand of linear DNA.\(^3\) Essentially, fluorescent tags of four distinct colors corresponding to each of the four nucleotides (adenine, guanine, cytosine, and thymine)

\(^1\) See Marisa Noelle Pins, *Impeding Access to Quality Patient Care and Patient Rights: How Myriad Genetics’ Gene Patents Are Unknowingly Killing Cancer Patients and How to Calm the Ripple Effect*, 17 J. INTELL. PROP. L. 377, 384 (2010) (noting that some inherited mutations may increase a “person’s risk for a variety of diseases, while others are innocuous”).

\(^2\) *Cancer Risk and Abnormal Breast Cancer Genes*, Breastcancer.org, http://www.breastcancer.org/risk/genetic/bcrisk_abnrm_genes.jsp (last visited Oct. 22, 2010). It is important to note that hundreds of potential mutations have been identified in BRCA1/2 genes, each one carrying with it a different level of risk of the development of breast and ovarian cancer. These percentages simply quantify overall risk for according to the frequency of each distinct mutation in the female population of the United States.

are allowed to bind to the DNA. These fluorescent tags are identified by a detector, which provides the information to a computer in order to reconstruct the entire gene sequence. In order to perform gene sequencing, the specific gene to be sequenced is purified and isolated from the individual's body prior to the introduction of the fluorescent tags. The term “purified” implies isolation from the gene’s natural state, whereas the term “isolation” implies removal from the body and separation from the surrounding cellular material. This purified and isolated DNA molecule that encodes such a gene may therefore be the same in sequence as the naturally occurring gene, albeit with an altered chemical structure due to the removal of associated cellular products that facilitate packaging of the DNA into a chromosome. Under the current USPTO policy, such a purified and isolated DNA molecule is patent eligible.

B. Patenting of Genes and Other Biological Materials in the United States

1. Development of United States Case Law

The United States Constitution gives Congress the power “[t]o promote the Progress of Science and useful Arts, by securing for limited Times to…Inventors the exclusive Right to their respective…Discoveries.” Under this authority, Congress enacted the first Patent Act in 1790 and the most recently revised Act in 1952. 35 U.S.C. §101 describes patentable subject matter as “any new and useful process, machine, manufacture, or composition of matter.” Famously, in Diamond v. Chakrabarty, the Supreme Court broadly construed such statutory subject matter “to include anything under the sun that is made by man,” but went on to hold that “laws of nature, physical phenomena, and abstract ideas” are excluded from patent-eligible subject matter.

Under early cases, purified natural products were generally held to be unpatentable. It is important to note that despite its conclusions of patent-ineligibility, the Supreme Court did not appear to rely on the fact that the subject matter was a product of nature, but rather a lack of novelty evidenced by an inability to distinguish between the natural and purified/synthetic compositions. In American Wood-Paper Co. v. Fibre Disintegrating Co., the court invalidated a patent for extracted wood pulp because it found the purified product to be the same as the natural product. Similarly, in Cochrane v. Badische Anilin & Soda Fabrik, the court held that a synthetic dye was not a new composition because it had the same chemical makeup as the natural dye.

However, this line of reasoning was challenged in a line of cases holding that isolation and purification may alter a composition of matter so as to render it patent-eligible. Within the chemical context, the court in Union Carbide Co. v. American Carbide Co. found that a crystalline product described in the application was different from an amorphous product found in the prior art due to physical properties that made it better suited for commercial use in gas generators. Similarly, in Kuehmsted v. Farbenfabriken of Elberfeld Co., the court upheld a patent for a form of aspirin (acetyl salicylic acid) purified by a process resulting in an increased therapeutic effect compared to aspirin purified by previous methods. The court noted that “though the difference . . . be one
of purification only—strictly marking the line, however, where the one is therapeutically available and the others were therapeutically unavailable—patentability would follow.”

This logic formed the basis for one of the most notable cases examining the patentability of biological materials, *Parke-Davis & Co. v. H. K. Mulford Co.* In that decision, Judge Learned Hand held that a patent for adrenaline was valid because the adrenaline had been isolated from nature. Specifically, the inventor had made it available for any use by removing it from other gland tissue in which it was found, thereby transforming it for every practical purpose into a new thing, commercially and therapeutically.

Such decisions paved the way for the patentability of biological products in their isolated and purified form, a view that garnered further support from the Court of Customs and Patent Appeals in *Application of Bergstrom*. In that case, the court held that two chemical entities of the prostaglandin family extracted from prostate glands were patentable because the compounds were not naturally occurring in their purified form. The court asserted that pure materials differ from impure materials by definition, and if impure materials are the only ones existing and available, consequently, the pure materials are new with respect to the impure materials.

Accordingly, courts have implicitly recognized the patent-eligibility of purified and isolated DNA molecules. In *Amgen, Inc. v. Chugai Pharmaceuticals Co.*, the district court accepted the defendant’s assertion that the claimed invention was a purified and isolated DNA sequence encoding human erythropoietin, i.e. the cloned gene rather than the sequence listing *per se*. Therefore, the claim was not directed towards a sequence that would be “a nonpatentable natural phenomenon ‘free to all men and reserved exclusively to none.’” The Federal Circuit accepted the district court’s construction of the claim, specifying the subject matter as “the novel *purified and isolated* sequence which codes for EPO.”

Though the Supreme Court has not directly addressed the issue of purified and isolated gene sequences in the context of patent eligibility, an affirmative decision would be in accord with its previous decisions. With regard to biological products, the Court in *Diamond* held that a bacterium genetically engineered to carry multiple oil-degrading plasmids fell within the ambit of patentable subject matter. The Court concluded that the claimed microorganism was a “nonnaturally occurring manufacture or composition of matter” having “markedly different characteristics from any found in nature,” contrasting it with “a new mineral discovered in the earth or a new plant found in the wild.” This holding has been interpreted by at least one commentator to mean that natural things left unaltered by human intervention are unpatentable products of nature, while some natural things may be so transformed by man that they cease to be products of nature. Thus, the crucial question before the Court in the instant appeal will be whether purification and isolation of a genetic sequence results in a nonnaturally occurring composition of matter with characteristics markedly different from those of DNA in its natural state sufficient to render it patentable subject matter.

2. Current Position of the USPTO

The USPTO has granted 4270 patents containing claims directed to about 4382 human genes. In promulgating its Utility Examination Guidelines, the USPTO responded to a number of comments received regarding the patent-eligibility of human genes. Many such comments opined that a gene is not a new composition of matter because it exists in nature, and consequently, an inventor who isolates a gene does not actually invent or discover a patentable composition.

41. *Id.*
42. 189 F. 95 (C.C.S.D.N.Y. 1911).
43. *Id.* at 103.
44. *Id.*
46. *Id.* at 1401-02.
47. *Id.* at 1401 n. 10 (“Webster’s . . . defines ‘pure’ as ‘Separate from all heterogeneous or extraneous matter; free from mixture or combination. . . .’”) (quoting *Webster’s New International Dictionary, 2d ed. 1954*).
48. *Id.* at 1402.
50. *Id.* at *32, 13 U.S.P.Q.2d at 1759.
51. *Id.* (quoting *Diamond v. Chakrabarty*, 447 U.S. 303, 309 (1980)).
52. *Amgen, Inc. v. Chugai Pharm. Co.*, 927 F.2d 1200, 1206 (Fed. Cir. 1991) (placing emphasis upon the terms “*purified and isolated*”), see also *In re Kubin*, 561 F.3d 1351, 1352 (Fed. Cir. 2009) (noting that “[t]his case presents a claim to a *classic biotechnology invention—the isolation and sequencing of a human gene that encodes a particular domain of a protein*”).
54. *Id.* at 309-10.
56. Jensen & Murray, supra note 2, at 239.
58. *Id.* at 1093.
In response, the USPTO asserted that “a patent claim directed to an isolated and purified DNA molecule could cover a gene excised from a natural chromosome or a synthesized DNA molecule.” Relying on Parke-Davis and In re Bergstrom, the USPTO emphasized that a molecule having the same sequence as a naturally occurring gene is patent-eligible because (1) an excised gene is patent-eligible as a composition of matter because that DNA molecule does not occur in that isolated form in nature or (2) a synthetic DNA preparation is patent-eligible because its purified state is different from the naturally occurring compound.

3. The District Court’s Decision in Myriad

Myriad holds, through assignment or exclusive license, several U.S. patents on the isolated DNA molecules relating to the BRCA1/2 sequences. Myriad did not enforce its patents against academic research institutions, but regularly sought enforcement against both research institutions and commercial entities providing commercial diagnostic testing through cease-and-desist letters and litigation. At least nine clinical diagnostic laboratories ceased BRCA1/2 testing due to Myriad’s patent holdings. Myriad’s enforcement actions precipitated AMP’s request for declaratory judgment that Myriad’s patents on human BRCA1/2 are invalid under 35 U.S.C. § 101 and are unconstitutional because the granting of human gene patents by the USPTO violates Article I, section 8, clause 8 and the First Amendment of the Constitution.

The claims addressed by the lawsuit fall into two main categories: composition claims and method (process) claims. The composition claims are directed to isolated and purified DNA molecules that encode either normal (wild-type) or mutant forms of BRCA1/2 proteins. A representative composition claim is claim one of U.S. Patent 5,747,282, which reads, “[a]n isolated DNA coding for a BRCA1 polypeptide, said polypeptide having the [following] amino acid sequence.” The method claims are directed to diagnostic methods for assessing a patient’s predisposition to the development of breast and ovarian cancer using such isolated DNA molecules as identified in the composition claims. A representative method claim is claim twenty of U.S. Patent 5,753,441, which reads:

A method for detecting a germline alteration in a BRCA1 gene, said alteration selected from the group consisting of the alterations set forth in [the Tables] . . . which comprise[] analyzing a sequence of the BRCA1 gene or BRCA1 RNA from a human sample or analyzing the sequence of BRCA1 CDNA [sic] made from mRNA from said sample.

Several pre-trial motions were submitted to the court: 1) AMP moved for summary judgment, declaring that Myriad’s patents were invalid; 2) Myriad moved for summary judgment to dismiss AMP’s complaint for lack of subject-matter jurisdiction, characterizing the suit as consisting of a mere policy disagreement rather than a real controversy; and 3) the USPTO moved for judgment on the pleadings under the doctrine of constitutional avoidance. The court stayed AMP’s

59. Id. (emphasis added).
60. Id.
61. AMP Complaint, supra note 3, at ¶ 31.
63. See id. at 378–379 (discussing letters sent to the University of Pennsylvania, Georgetown, and Yale).
64. See id (discussing the litigation it was involved in with Oncormed and the University of Pennsylvania).
65. Id. at 380; Mildred K. Cho, et al., Effects of Patents and License on the Provision of Genetic Testing Services, 5 J. MOLECULAR DIAGNOSTICS 3, Table 2 (2003).
66. AMP Complaint, supra note 3., at ¶ 102.
68. Id. at 211-12.
70. U.S. Patent No. 5,753,441 col. 157 ll. 11-17 (filed Jan. 5, 1996). Method claims will not be discussed in detail as these claims are beyond the scope of this paper.
72. Memorandum of Law in Support of Defendant’s Motion to Dismiss, Ass’n for Molecular Pathology v. U.S. Patent & Trademark Office, 2009 WL 3269109 (S.D.N.Y. July 13, 2009) (“This case is clearly a thinly veiled attempt to challenge the validity of patents where, other than an overall policy disagreement concerning the legitimacy of gene patents, the plaintiffs have no actual dispute with the Defendants over patent infringement.”).
73. Memorandum of Law in Support of Defendant United States Patent & Trademark Office’s Motion for Judgment on the Pleadings and in Opposition to Plaintiff’s Motion for Summary Judgment, Ass’n for Molecular Pathology v. U.S. Patent & Trademark Office, 2009 WL 5785024 (S.D.N.Y. Dec. 24, 2009) (“Because plaintiffs have not identified any way in which the Constitution imposes limits on patents beyond those already imposed by the patent laws, plaintiffs’ First Amendment claim merges with their statutory claims, and should therefore be
Motion for Summary Judgment pending its resolution of Myriad’s motion to dismiss. On November 2, 2009, the court denied Myriad's motion to dismiss, stating that “[t]he novel circumstances presented by this action . . . , the absence of any remedy provided in the Patent Act, and the important constitutional rights the Plaintiffs seek to vindicate establish subject matter jurisdiction over the Plaintiffs' claim.” Ultimately, the USPTO's motion for judgment on the pleadings was granted, dismissing the plaintiffs' claims. Most significantly, on March 29, 2010, the court granted AMP’s motion for summary judgment, resulting in invalidation of the challenged patent claims relating to Myriad's BRCA1/2 composition and method claims.

Though the Supreme Court has never made a general statement that products of nature are patent-ineligible, the district court concluded that exclusion of products of nature under 35 U.S.C. § 101 “reflects the Supreme Court's recognition that 'phenomena of nature . . . are not patentable.’” Thus, the court delineated its sole task as determining “whether the claimed invention . . . falls within the judicially created 'products of nature' exception.” Consistent with several of the cases cited supra, the court acknowledged that a change in a product of nature resulting in the creation of a fundamentally new product would be eligible for a patent. Using the restrictive language of Diamond requiring that the product possess “markedly different characteristics” to establish creation of a fundamentally new product, the court concluded that isolated and purified DNA does not possess markedly different characteristics from native DNA.

C. Patenting of Genes in Europe

1. European Patent Convention

The European Patent Convention (“EPC”) is a multilateral treaty that instituted the European Patent Organization in order to provide an autonomous legal system by which European patents are granted. Practically, the grant of a European patent does not provide a unitary right, but rather a “group” of essentially independent patents granted on a single application, nationally-enforceable and nationally-revocable by Contracting states. The EPC provides a legal framework for the granting of European patents through a single, harmonized procedure before the European Patent Office (“EPO”), a division of the European Patent Organization.

The EPC requires that patents be granted for “any inventions which are susceptible of industrial application.” Exceptions covering inventions considered “discoveries, scientific theories, and mathematical methods,” among others, are codified within the treaty, rather than derived from case law as in the United States. In addition, the European Union may issue directives interpreting treaties such as the EPC that require compliance by member States through harmonization of their national laws to make them consistent with the directive. Notably, the European Union Biotech Directive interpreted the EPC patentable subject matter exceptions narrowly, affirming that isolated biological material is considered patentable subject matter even if previously occurring in nature. The Directive further specifies that, if isolated from the human body, “the sequence or partial sequence of a gene” may constitute patentable subject matter, so long as the industrial application of that sequence is disclosed.

86. European Patent Convention, supra note 86, at art. 21(1).
87. Id. at art. 52 (emphasis added). Note the similarity in breadth to the language of 35 U.S.C. § 101 requiring “any new and useful process, machine, manufacture or composition of matter” for patentability. (emphasis added)
88. Id. at art. 52(2). Other less germane exceptions include aesthetic creations, schemes, rules and methods for performing mental acts, playing games or doing business, programs for computers, and presentations of information.
A European patent is subject to revocation or narrowing by the EPO by either of two types of post-grant procedure—an opposition procedure or a limitation and revocation procedure. The opposition procedure may initiated by any interested person from the public who believes that the patent should not have been granted. The opposition must be based on the grounds set forth in Article 100 of the EPC, which include that the invention lacks novelty, an inventive step, or industrial application, and be received within nine months of publication that the patent has been granted. Once an opposition is filed, the opposition division, consisting of three experienced examiners, begins an investigation that includes examination of the patent, invitation to the parties to file any observations, and, typically, oral proceedings. The final outcome is one of three possibilities: (1) revocation of the patent, (2) maintenance of the patent, or (3) maintenance of the patent in amended form. Subsequent to the decision of the opposition division, the parties have the option to appeal to the independent boards of appeal.

2. European Patent Office's Treatment of Myriad's Patents

The EPO granted four patents to Myriad covering the BRCA1/2 genes and related diagnostic methods, one of which claimed the isolated DNA molecule encoding BRCA1. Opposition to the '902 patent was filed on August 28, 2002 by organizations from eleven European countries on multiple grounds including lack of novelty, inventive step, and/or industrial application. As for lack of novelty, Myriad claimed a priority date to a patent application filed in the U.S. in 1994 in which the BRCA1 sequence listing contained ten errors ultimately requiring amendment on March 24, 1995 to reflect the correct sequence. During that time, the molecule encoding BRCA1 was isolated by other researchers and its sequence placed in scientific databases and numerous articles in the public domain. Thus, the challengers contended that the incorrect sequence in the 1994 application could not overcome the absolute novelty bar of the European patent system. With regard to lack of inventive step, previous work of the Breast Cancer Linkage Consortium had narrowed down the region of the chromosome containing the BRCA1 gene considerably, so much so that one researcher felt that it was only a matter of luck as to which individual researcher would find it. In connection with lack of industrial application, the challengers focused on Article 52(4) of the EPC, which states that “diagnostic methods practiced on the human . . . body shall not be regarded as inventions which are susceptible of industrial application.” Though the claim was directed towards the isolated DNA molecule, the only use of that molecule supported by the specification fell within the context of a diagnostic method.

The opposition division failed to reach any conclusions regarding the assertions of the challengers regarding patentable subject matter, but instead determined that Myriad improperly extended the subject matter by amendment of claims after issuance of the patent in violation of Article 123(2). As a result, the patent was severely limited by invalidation of claims directed towards the isolated BRCA1 molecule; diagnostic methods; BRCA1 protein; conceivable variations thereof; and methods of using such variations for the treatment of breast, ovarian, and prostate cancer.

91. Id. at art. 5.
93. Id.; see also Pins, supra note 16, at 401.
94. European Patent Convention, supra note 86, at art. 100.
95. The Opposition Procedure, supra note 94; See also European Patent Convention, supra note 86, at art. 100(a).
96. The Opposition Procedure, supra note 94. Prior to the oral proceedings, the patent holder can amend the description, claims, and drawings.
97. Id.
98. Id.
99. EPO 0699754 (issued Jan. 10, 2001); EPO 0705902 (issued Nov. 28, 2001); EPO 0705903 (issued May 23, 2001); EPO 0785216 (issued Jan. 8, 2003).
100. EPO 0705902 (entitled 17q-linked breast and ovarian cancer susceptibility gene).
102. Id.
103. Id. at 142.
105. Opposition, supra note 102, at 142.
106. Id.
107. Id. at 143.
108. European Patent Convention, supra note 86, at Art. 52(4); Opposition, supra note 102, at 144.
therapeutic applications in gene therapy, drug screening, and transgenic animals; and diagnostic kits.110 After the opposition division's decision, the new patent issued on June 8, 2008, with only three claims directed towards a \textit{BRCA1} DNA probe and a vector coding for said probe.111 It appears that the EPO tacitly recognized the validity of the challengers' policy arguments in crafting its decision but specifically sought to avoid making any conclusions that might call into question the validity of European patents on isolated DNA molecules.

3. Recent Developments in European Case Law

\textit{Monsanto Technology LLC v. Cefetra B.V.}112 is the first and only national court referral to the European Court of Justice seeking an interpretation of the EU Biotech Directive. \textit{Monsanto} holds a European patent claiming modified soybean DNA molecules that confer the plant immunity to certain herbicides, also manufactured by \textit{Monsanto}.113 \textit{Cefetra}, in an attempt to take advantage of \textit{Monsanto}'s lack of an Argentinean patent covering the technology, imported soy meal containing “dead” versions of the subject DNA sequences into the Netherlands.114 \textit{Monsanto} sued \textit{Cefetra} in a Dutch court for violation of national patent law, which, similarly to that of the U.S., conveys an exclusive right on the patent holder to exclude others from importing the patented product.115

\textit{Cefetra} asserted that the EU Biotech Directive supersedes Dutch patent law. Specifically, Article 9 provides that protection extends to “all material . . . in which the [patented] product is incorporated and in which the genetic information is contained and \textit{performs its function}.116 The Dutch court referred to the European Court of Justice the question of whether absolute protection of a DNA sequence, as such, is permissible under the Directive despite the fact that the sequence did not express its function at the time of importation.117 The European Court of Justice determined that such protection provided by Dutch patent law violated Article 9 of the Directive.118 The court stated that “a mere DNA sequence without indication of a function does not contain any technical information and is therefore not a patentable invention.119

Though the court's ruling does not preclude the patenting of genes, it appears to preclude absolute protection of an isolated DNA molecule \textit{per se}. Notably, the court’s language emphasizing a DNA molecule's performance of function bears an interesting connection to that of the district court in \textit{Myriad}—it is not the chemistry of the DNA sequence that is important, but rather the function (i.e., information-delivering) of that sequence.120 Because this decision was held to apply retroactively, it remains to be seen what effect it will have on gene patents such as those held by \textit{Myriad}. Arguably, under a more liberal view, the isolated DNA molecules generated in the course of sequencing are not capable of performing their function, making those molecules ineligible for patent coverage in the European Union in the diagnostic context.121

III. Arguments Surrounding the Gene Patenting Debate

Parties on both sides of the gene patenting debate have presented a number of valid arguments to support their position.Opponents of gene patenting assert that gene patents impede access to genetic testing, hinder attempts to increase the quality of genetic testing, and create barriers to basic research on certain genetic mutations underlying development of disease. On the other hand, proponents argue that isolated and purified DNA is patentable subject matter, regardless of the policy arguments against gene patenting, and that gene patents stimulate investment in development of genetic testing and further basic research related to the genetic mutations that are the subject of such testing. In the end, because isolated and purified DNA is patentable subject matter and patents on genetic testing are crucial for obtaining much-needed research dollars, the Court of the Appeals for the Federal Circuit should overturn the district court’s decision in \textit{Myriad}.122

\begin{itemize}
\item 110 Lessons, \textit{supra} note 110, at 321.
\item 111 Eur. Patent No. 0705902 (filed on Aug. 11, 1995).
\item 112 Case C-428/08, Monsanto Tech., LLC v. Cefetra B.V., 2010, \textit{http://curia.europa.eu/jcms/jcms/j_6/} (write case number in “Case no” box; then click “Search”; choose the “2010-07-06 Judgment”).
\item 113 \textit{id.}; Conley, \textit{supra} note 90.
\item 114 \textit{id.}
\item 115 \textit{id.}; Rijksoctrooifwet [\textit{Law on Patents}] art. 53 (Neth).
\item 117 Case C-428/08, Monsanto Tech., LLC v. Cefetra B.V., 2010; Conley, \textit{supra} note 90.
\item 118 \textit{Id.}
\item 119 Case C-428/08, Monsanto Tech., LLC v. Cefetra B.V., 2010 (citing Counsel Directive, \textit{supra} note 91 at Recital 23).
\item 120 Conley, \textit{supra} note 90.
\end{itemize}
A. The Arguments Against Gene Patenting

1. Gene Patents Impede Access to Patient Testing

As both the plaintiffs and the Secretary’s Advisory Committee on Genetics, Health, and Society (“SACGHS”) have recognized, the issue of limited access typically arises in the context of a sole service provider. The basis for this argument lies in the assumption that patents associated with genetic tests limit access by raising prices above what would exist in the competitive market. As a result many insurance carriers will not cover testing, requiring patients to pay for the test out-of-pocket. Though the test remains available to such patients for such a premium, many patients, such as those covered under state-run Medicaid programs, may be forced to forgo testing because they cannot afford it. However, at least one case study demonstrated that the per-unit price of the BRCA test is actually comparable to a similar colon-cancer test for which the patents have been nonexclusively licensed. In fact, the SACGHS concluded there is no evidence that patents have consistently led to higher prices for genetic tests.

Viewing this issue from another perspective, lack of patient access results from insurance industry practices, rather than from patent exclusivity. As a predictive genetic test, the BRCA test provides only a general estimate of patients’ chances of developing breast cancer, as it fails to take into account the influence of other mutations and environmental factors, meaning many women who test positive will never develop breast cancer. Such technological limitations may lead an insurance carrier to allocate its resources to forms of testing that provide more concrete information to patients. Indeed, there are a number of diagnostic tests currently available that would provide beneficial medical information to patients, whether in the context of a sole provider or not, that insurance companies do not cover. In addition, the financial gain to service providers resulting from increased market size drives active negotiation with payers in order to increase patient pools, which in turn increases access, as evidenced by Myriad’s reduction of the number of self-pay patients to a single-digit percentage of its client base.

2. Gene Patents Result in Decreased Quality of Genetic Testing

It has been asserted that gene patents result in decreased quality of genetic testing in two ways. First, the quality of the actual diagnostic test may remain stagnant, as market exclusivity fails to push service providers to improve testing. For example, one French study found that Myriad’s BRCA testing procedure failed to detect ten to twenty percent of mutations. Some commentators suggest that increased competition results in improved testing regardless of whether available tests are of high quality and subject to excellent quality control procedures. On the other hand, there are several technical advantages to centralizing genetic testing, including the consistency that results from running all tests on the same equipment using standardized protocols and reagents and the ease of maintaining regulatory oversight.

Second, in the sole provider context, confirmatory testing from an independent laboratory remains unavailable. Therefore, it is difficult to assess whether concerns about testing quality are well-founded. Further, patients who receive inconclusive test results lack additional options for determining their predisposition to the development of disease. However, Myriad has never received a single request from a patient or healthcare provider to conduct a second test at another lab. At least in the case of Myriad,
such quality concerns, in addition to recent scientific developments, led the company to develop a second, more robust test (the BART test), which is offered at no cost when indicated.138

3. Gene Patents Create Barriers to Research

A common argument against the patenting of isolated human DNA molecules is that such patents impede research. In the instant case, the plaintiffs allege that several scientists, due to potential liability for their research activities, discontinued their research on BRCA genes after Myriad secured its patents.139 Though Myriad is not currently targeting non-commercial researchers with its enforcement activities,140 there is no exemption for these researchers, meaning that it would be possible for Myriad to seek an injunction or institute a patent infringement action against these researchers. However, there is little evidence that gene patents held by Myriad or any other entity have a negative impact on basic or clinical research. For example, an empirical study conducted at the University of Illinois examining 125 academic researchers demonstrated little to no negative impact on research productivity.141 Another study by the German government found that DNA patents created no barrier to entry into fields of research where isolated DNAs had been patented.142 Though the prospect of receiving a patent is “not the major force motivating scientists,” that is not a justifiable reason to preclude genes as patentable subject matter, as patents are important for commercialization of genetic tests.143

There is one valid argument that pervades the issue of gene patents as an impediment to research—there are possible negative effects on the future of genetic testing due to its dependence on the growing capacity to analyze multiple genes simultaneously.144

Because approximately twenty percent of genes have been patented, development of multiplex tests and parallel sequencing will be dependent on acquisition of rights to multiple gene patents.145 Similarly, whole-genome sequencing would require acquisition of rights to most, if not all, existing gene patents.146 The cumulative costs of multiple licenses, the associated costs of negotiations, and the right of a patent holder to refuse to license his invention could prevent such products from ever reaching the market.147

B. The Arguments for Gene Patenting

1. Purified and Isolated DNA Is Patentable Subject Matter

From the beginning, the district court appeared to view Myriad’s assertion of the isolation and purification of DNA as transforming it into something distinctly different in character with hostility, framing such practice as a “‘lawyer’s trick’ that circumvents the prohibitions on the direct patenting of the DNA in our bodies.”148 However, the district court’s assertion that DNAs unique characteristics differentiate it from other chemical compounds149 seems to rely on philosophical underpinnings in lieu of the scientific analysis that provides the basis for this so-called “lawyer’s trick.” Such philosophical justifications are evident in the court’s statement that “DNA represents the physical embodiment of biologic information” and “DNA’s existence in isolated form alters neither this fundamental quality of DNA as it exists in neither the body nor the information it encodes.”150

The difference in the structural and functional properties of isolated DNA when compared to those of native DNA is critically important to the utility and function of such claimed isolated DNA molecules.151 Native DNA is protected in the cell because it remains surrounded by proteins and stably embedded in chromosomes.152 Removal of associated cellular products that facilitate packaging of the DNA into a chromosome by isolation and purification fundamentally alters the chemical structure of DNA. Such isolation renders DNA molecules useful as physical probes and primers for the identification of mutations in patients, thereby

141. Myriad’s Memo, supra note 136, at 45.

142. Id.

143. SACGHS, supra note 124, at 1-2.

144. Id. at 3.

145. Id.

146. Id.

147. Id.

148. Ass’n for Molecular Pathology, 702 F. Supp. 2d. at 185.

149. Id. at 228.

150. Id. at 185.

152. Id at 30.
allowing diagnosis of increased cancer susceptibility.153 Thus, the utility of such molecules is based on their ability to target and interact with other DNA molecules, not just the biological information contained within. Such a function is dependent on an isolated DNA molecule’s unique structure and chemistry,154 a structure and chemistry that, importantly, is lacking in native DNA molecules. As the court acknowledged, purified DNA can be used as a tool for biotechnological applications for which native DNA cannot be used.155

The uncontradicted scientific evidence demonstrates that the isolation and purification of a DNA molecule results in a new and useful composition of matter in satisfaction of the requirements of 35 U.S.C. § 101 or an invention in the field of biotechnology in satisfaction of Art. 52 of the EPC.156 This composition of matter is not a law of nature, physical phenomenon, or abstract idea, and so it does not fall within the exceptions to § 101 established by case law.157 Similarly, it does not fall within the EPC exceptions of a discovery, scientific theory, or mathematical method.158 In determining patent eligibility, isolated DNA molecules should be treated no differently from other chemical compounds, and the courts’ misplaced focus on the information-containing or information-delivering qualities of DNA should not be used to justify such differential treatment.

2. Gene Patents Stimulate Investment

Though individual scientists may not be motivated by the prospect of receiving a patent, “meaningful gene-disease associations are confirmed only if the initial discoveries are followed by large scale replication and validation studies using multiple sample sets, the costs of which are prohibitive for many research groups.”159 Congress’s enactment of the Bayh-Dole Act, which established a uniform policy among federal agencies that academic institutions may patent inventions arising from federally supported research and license them to companies, is a direct acknowledgment of this economic reality.160 It was premised on the belief that absent exclusive patent rights from licenses, companies will not invest resources to develop an invention into a product because free-riders could copy the finished product.161 Indeed, the strength of a company’s intellectual property strategy and position is one of the top three questions posed by investors.162 Thus, due to the enormous sums of money required to discover, develop, test, and approve genetic tests, notwithstanding the time it takes to develop such tests, protection of the related intellectual property is critical.163

Had it not been for the exclusive patent rights it obtained regarding \textit{BRCA1/2} and the infusion of capital that follows from such exclusivity, Myriad would never have been created, and its \textit{BRCA1/2} tests would never have been brought to the market, resulting in a true barrier to patient access.164 For example, Eli Lilly agreed to fund Myriad’s ongoing research efforts in return for licensing privileges on diagnostic kits and therapeutic products related to \textit{BRCA1}.165 Similarly, the prospect of gene patents has also been critical to funding the development of genetic testing for other diseases, including hereditary hemochromatosis (Mercator Genetics), spinal diseases (Axial Biotech), diseases that predominantly affect women (Juneau Biosciences), spinal muscular atrophy (Claire Altman Heine Foundation), and muscular dystrophy (Boston Children’s Hospital).166 Though the federal government remains the major funder of basic genetic research,167 private investment is necessary to translate basic research from the lab bench to the patient’s bedside.

3. Gene Patents Stimulate Research

While it is evident that gene patents stimulate the translational research needed to drive genetic testing innovation from the lab to market, it is also clear that gene patents stimulate basic research and discovery. Since Myriad’s public disclosure of the \textit{BRCA1} gene in 1994 and \textit{BRCA2} gene in 1996, more than 18,000 scientists

153 Id. at 32; See, e.g., U.S. Patent No. 5,693,473 (filed June 7, 1995).

154 Id. at 33.

155 702 F. Supp.2d at 196.

156 35 U.S.C. § 101; European Patent Convention, supra note 86, at art. 52(1).

157 \textit{Diamond v. Chakrabarty}, 447 U.S. at 309 (setting forth the exceptions of laws of nature, physical phenomena, and abstract ideas).

158 European Patent Convention, supra note 86, at art. 52(2).

159 SACGHS, supra note 123, at 23.

160 Id. at 28.

161 Id. at 29.

162 "Lisa A. Haile, \textit{IP Position Critical to Biotech Investment}, 30(7) WALL STREET BIOBEAT (April 1, 2010), http://www.genengnews.com/gen-articles/ip-position-critical-to-biotech-investment/3235/ One investment banker stated that “[w]e know that if the IP position is not strong, it is unlikely that we will pursue the opportunity further.” SACGHS, supra note 124, at 29.

163 Haile, supra note 16; SACGHS, supra note 124, at 29.

164 Myriad’s Memo, supra note 136, at 47.

165 SACGHS, supra note 124, at 23.

166 Id. at 24-26.

167 Id. at 25.
have researched the genes, leading to the publication of over 5,600 papers on \textit{BRCA1} and over 3,000 papers on \textit{BRCA2}.\footnote{168. Myriad’s Memo, \textit{supra} note 136, at 46.} Interestingly, the individual plaintiffs and their declarants in the instant case published forty-eight peer-reviewed research papers on the \textit{BRCA1/2} genes without any interference from Myriad.\footnote{169. \textit{Id}.} Apparently, Myriad’s gene patents did nothing to impede their research. Furthermore, Myriad has found it in its own best interest to freely allow academic scientists to conduct research studies on the \textit{BRCA1/2} genes, provide direct assistance to such researchers, and publish and actively disseminate its own research into the public domain.\footnote{170. \textit{Id} at 47.} Such stimulation of research is not unique to the field of breast cancer. Human Genome Sciences provided collaborators at Johns Hopkins University access to the company’s proprietary database of DNA sequences coding for receptor proteins, resulting in the discovery of the \textit{MLH1} gene involved in colon cancer.\footnote{171. SACGHS, \textit{supra} note 124, at 25; R. Cook-Deegan et al., \textit{supra} note 130 at S29.} Though opponents of gene patenting may see the biotech industry as capitalistic and self-serving, such characteristics have resulted in an increased recognition by biotech entities of the mutual benefits that flow from collaborations with independent groups engaged in basic research.

IV. Conclusion

The United States Court of Appeals for the Federal Circuit should overturn the district court’s decision in \textit{Myriad}. First and foremost, isolated DNA molecules fit within the definition of patentable subject matter as defined by statute and developed through case law. In addition, though there are valid arguments against the patenting of such molecules, including the creation of barriers to patient access, research, and improvement of test quality, when weighed against arguments in support this type of patenting, namely stimulation of research and investment, it becomes clear that patenting of isolated DNA molecules will have the most benefit to the public as a whole. The intellectual property position of biotech companies is one of the most important factors potential investors consider, and, without significant capital investment, research groups would lack the considerable resources required to translate these technologies into reliable, effective diagnostic tests and treatments. The future of genetic medicine looks promising, offering a number of innovations for identifying and curing heritable disorders—a future that will never happen without patent protection.